
Weeding out seurity bugs in DebianJavier Fernández-Sanguino PeñaMay 18, 20061 How do seurity bugs a�et the Debian projetThe Debian projet asserts that it provides a high-quality distribution (DebianGNU/Linux) with a release yle that is not fored upon by marketing require-ments and, onsequently, makes it possible to provide a distribution withoutimportant (i.e. release ritial) defets.However, one a release is done, any seurity bug a�eting a software pakagethat is part of the release has many diret onsequenes:
• our users' systems are immediately in danger of being ompromised dueto the seurity bugs (this will depend on the nature of the bug itself, andwhether it's a loal or remote exploitable bug)
• our seurity team needs to deal with the seurity bug in order to providea new �xed software pakage bakporting, or writing themselves, a path�xing the seurity bugs
• when the �x is developed our buildd infrastruture needs to handle the �xand generate new pakages in short time
• when an advisory is sent, after a new pakage version is available with the�x in our seurity servers, our seurity support infrastruture (bandwidthand servies) has to ope with hundreds of users downloading the newversion of the pakage to install the upgrade
• even if the seurity bug is �xed, there is always the possibility that the�x or the hanges in the pakage introdue new bugs that will a�et ourusers (even though they may not be seurity related)If any of these steps fail and, onsequently, the �window of exposure� (time ittakes from a seurity vulnerability to be known to a path be available by us)inreases then this impats negatively in the projet, new sites will pik this upand it will beome bad publiity.Seurity bugs have a negative impat even if the our pathing proess worksout �awlessly: we are able to produe pathes in time for all our supportedarhitetures (or even before the vulnerability is publily known) and there areno hiups with any of our infrastruture. When doing a review of the numberof seurity bugs found for a given release, reviewers might �nd that the releaseproess has not been adequate if the bugs found after the release is too high.Indeed, our release proess was designed partly to �nd (and �x) these kind of1



bugs, if there are too many advisories published after a release then that mightbe an indiation that there is a �aw in our release proess.There is also the issue of quantity, regardless of the previous issues, an in-reasing number of seurity bugs require an inreasing number of resoures fromthe Debian projet. These resoures inrease: CPU (in di�erent arhitetures todrive the seurity buildds), bandwidth (for the download of the pathes), and,most important, human (the people that have to develop the path, test it andwrite the advisory).2 Seurity issues in the Debian distributionThe Debian Seurity Team has issued (sine 2001 and up to April the 5th 2006)1047 advisories for 1387 distint vulnerabilities. Of these, over 65% have beenrelated to remote vulnerabilities. This is not neessarily the real distributionof vulnerabilies of the di�erent releases the projet, it is the number of vulner-abilities that the projet has issued advisories for.This is the list of lasses of seurity bugs found in Debian pakages1 as wellas the perentage of vulnerabilities �xed in issued advisories:bu�er over�ows the input being reeived by a system, be it human or ma-hine generated, auses the system to exeed an assumed boundary. Thismight be onsidered a subset of improper data handling, but the largenumber of appliations and the onsequenes of this bug (ode exeution)justify it being onsidered a di�erent lass of bug (almost 27% of seurityvulnerabilities);improper data input handling the input being reeived by a system is notproperly heked suh that a vulnerability is present that an be exploitedby a ertain input sequene. This issue leads to many type of di�erentattaks, suh as ross-site sripting in web appliations, or SQL injetion(almost 25% of seurity vulnerabilities);design errors when there does not exists errors in the implementation or on-�guration of a system, but the initial design auses a vulnerability to exist(18,7%);boundary ondition error the input being reeived by a system, be it humanor mahine generated, auses the system to exeed an assumed boundary.It is also a subset of input validation (7%);exeptional ondition handling handling (or mishandling) of the exeptionby the system that enables a vulnerability (6,5%);aess validation error the aess ontrol mehanism is faulty (4,7%);rae onditions the non-atomiity of a seurity hek auses the existene ofa vulnerability (2,6%);1It is based on the published DSAs rossed with the information available in the NationalVulnerability Database http://nvd.nist.gov/ (NVD, formerly ICAT) based on the CVEname of vulnerabilities. 2



on�guration error user ontrollable settings in a system are set suh thatthe system is vulnerable (2,4%);environmental error: the environment in whih a system is installed somehowauses the system to be vulnerable (0,9%).All these bugs are, in themselves, defets in the software itself. An appliationthat fails to validate input2 oming from untrusted users3 might introdue a se-urity vulnerability whih an range from a bu�er over�ow remotely exploitablein a server daemon to a SQL injetion error in a web-driven appliation.The following is the number of advisories (and vulnerabilities) for the di�er-ent distributions Debian has released4:
• 197 advisories for 256 vulnerabilities were published for Debian 2.2 (potato)whih was in seurity maintenane for 2.79 years. There are 59 millionlines of soure ode in this release;
• 690 advisories for 1070 vulnerabilities have been published for Debian 3.0(woody) whih has been in seurity maintenane for 3.7 years. There are105 million lines of soure ode in this release;
• 271 advisories 570 vulnerabilities have been published for Debian 3.1(sarge) in less than a year. This release has 216 million lines of soureode.Nobody will be surprised when told that the number of seurity vulnerabilities(and, onsequently, advisories) published for an operating system is very depen-dant on the amount of software it inludes, more software means more bugs.A reent analysis by Coverity5, a ompany that provides a losed-soure soureode audit software, shows an average of 0.3 defets per thousand lines of odefor some of the most popular and used FLOSS projets. Not all of these defetsmight be exploitable seurity bugs, but the more the distribution grows6 themore seurity bugs it will hold.It is important for Debian developers to know and understand the di�erenttypes of vulnerabilities as well as to know what they ould have done to preventa programming bug to beome a seurity issue. This inludes: designing serversso that they properly implement privilege separation instead of running as root,avoiding the use of setuid or setgid binaries and providing good installationdefaults suh as not starting up a servie if it is not properly on�gured orlimiting aess to an appliation to only the server it is installed on.2For more information see the �Validate All Input� setion of the David Wheeler's SeureProgramming for Linux and Unix HOWTO http://www.dwheeler.om/seure-programs/Seure-Programs-HOWTO/input.html.3In these ase they an be either remote users, for daemons, or loal users for setuid/setgidappliations.4I have also inlude the size of the distribution in millions lines of soure ode based on theLibre software engineering (Libresoft) researh group from the Universidad Rey Juan Carlos,as detailed in Debian Counting http://libresoft.dat.eset.urj.es/debian-ounting/.5For more information see Automating and Aelerating Open Soure Quality http://san.overity.om/, an analysis of thirty open soure projets inluding the Linux kernel,g, FreeBSD, NetBSD, Apahe, Samba, Perl, Firefox and GNOME. LWN overage (withinteresting disussion) is at http://lwn.net/Artiles/174426/6And based on Libresoft's data it is urrently doubling its size every two years!3



3 Work of the Debian seurity audit teamThe Debian Seurity Audit Team http://www.debian.org/seurity/audit/started working in 2004 to fous work on auditing Debian pakages for seurityissues. It has been diretly responsible of 82 Debian Seurity Advisories andhas opened up 122 seurity-related bugs in the BTS (up to marh 2006).The Audit Team is omposed of loosely oordinated group of people. Al-though they use a publi mailing list, more of the audit work is �hidden� andis not even disussed on list until an advisory is published. Currently, the dif-ferent members of the Audit Team fous on one spei� type of bug and worktheir way through the pakage soures in order to �nd instanes of that type ofseurity bug.One of the goals of the Audit Team is to have seurity bugs �xed in thedistribution before they are really an issue (i.e. before the a�eted pakageversions are released).Oasionally, members of the team also review seurity bugs and advisoriesfrom other distributions and make sure that the Debian pakage that providesthe same software is �xed in Debian too. At times, this overlaps with the workalready done by the Stable and Testing Seurity Teams but it often means thatthere are more �eyes� looking for (known) seurity bugs that might be presentin the software we distribution.These are some of the lessons learned by the team:
• many developers are not aware of the onsequenes of some seurity bugsand need to be shown that a seurity bug is of higher severity;
• even though some bugs have been found and reported, there are manymore seurity bugs present waiting to be removed. This speially appliesto software that is not too popular (onsequently, not many people arelooking for bugs in it) or seurity type of bugs that are not being oftenreviewed;
• there is too muh software in the distribution and auditing resoures aresare;
• the available free software tools for soure ode review are insu�ient forthe task at hand;
• it takes quite some time to �x seurity bugs. Speially seurity bugswhih are not highly ritial (suh as temporary �le vulnerabilities). Thisis related to the limited resoures of the Debian Seurity team but it alsohappens beause of maintainers being unresponsive.4 How an a developer improve seurity in theDebian OSWhen you are pakaging software for other users you should make a best e�ortto ensure that the installation of the software, or its use, does not introdueseurity risks to either the system it is installed on or its users.You should make your best to review the soure ode of the pakage and de-tet issues that might introdue seurity bugs before the software is released4



with the distribution. The programming bugs whih lead to seurity bugstypially inlude: bu�er over�ows http://en.wikipedia.org/wiki/Buffer_overflow, format string over�ows, heap over�ows, integer over�ows (in C/C++programs), and temporary symlink rae onditions http://en.wikipedia.org/wiki/Symlink_rae(very ommon in Shell sripts).Some of these issues might not be easy to spot unless you are an expert inthe programming language the program uses, but some seurity problems areeasy to detet and �x. For example, �nding temporary rae onditions in soureode an easily be done by just running grep -r "/tmp/" . in the soure odeand replae hard oded �lenames using temporary diretories to alls to eithermktemp or temp�le in Shell sripts, or File::Temp in Perl sripts, and tmp�lein C/C++ ode. You an also use soure ode audit tools 7 to assist to theseurity ode review phase.When pakaging software make sure that:
• It is not alpha or beta software, if it is, prevent it from going into testing(by introduing an RC bug for it). If it's not ready for release, don't letit be released.
• The software runs with the minimum privileges it needs. That is:1. the pakage does not install binaries setuid or setgid8;2. if the pakage provides a servie, the daemons installed should run as alow privileged user, not as root.
• Programmed periodi tasks (i.e., ronjobs) installed in the system do notrun as root or, if they do, do not implement omplex tasks.
• The default on�guration is sane and limits exposure. Don't think thateverybody will install the software in a development enviroment and needsall the bells and whistles the program might provide.If you are pakaging software that has to run with root privileges or intro-dues tasks that run as root, make really sure it has been audited for seu-rity bugs upstream. If you are not sure about the software you are pakag-ing, or need help, you an ontat the Debian Seurity Audit team and askfor a review. In the ase of setuid/setgid binaries, you must follow the De-bian poliy setion on permissions and owners http://www.debian.org/do/debian-poliy/h-files.html#s10.9.One your software has been released, make sure that you trak seuritybugs a�eting your pakages either through upstream mailing lists or throughseurity mailing lists. If a seurity bug is deteted that a�ets your pakage youmust follow the Handling seurity-related bugs http://www.debian.org/do/manuals/developers-referene/h-pkgs.en.html#s-bug-seurityguidelinesin the Developer's referene. Basially this boils down to ontating the seurityteam to let them know, and help produe (and test) pathes for the softwareversions released.Finally, invest time in reading about seurity bugs and how to prevent them.David Wheeler's Seure Programming for Linux and Unix HOWTO http://7More information available at http://www.debian.org/seurity/audit/tools8Lintian will warn of setuid, setgid binaries in the pakage5



www.dwheeler.om/seure-programs/Seure-Programs-HOWTO/index.html shouldbe a must read, it is an online book freely available paked full of valuable on-tent. For developers that pakage web-based appliations, the OWASP Guidehttp://www.owasp.org/doumentation/guide.html is also a must read. Otherreommended reading would be Seure Coding: Priniples |& Praties http://www.seureoding.org , by Mark G. Gra� and Kenneth R.Van Wyk (ISBN0596002424)5 ConlusionThe onstant growth of the distribution makes it inevitable that a large num-ber of unfound seurity issues are present in eah release. Seurity bugs drainimportant resoures from the projet but developers have it in their own handsto improve the situation by making sure they provide releasable software andthey prevent software that might not be releasable (unaudited, alpha or betasoftware) from getting into the distribution.on.Seurity safeguards might be introdued in the distribution, suh as stakover�ow prevention measures (as implemented in OpenBSD or Adamantix) orMandatory Aess Control mehanisms (suh as SElinux). But these safeguardswill only protet our users against spei� set of attaks, users annot (andshould not) rely on them to protet their systems against every possible instaneof seurity bugs.Also, unfortunately, due to the urrent status of automati soure ode audittools it is not possible, for the moment, to design or provide something akin tolintian.debian.org to warn Debian developers (and users) of possible seuritybugs in Debian pakages. We are urrently missing metris to evaluate thequality (seurity-wise) of Debian pakages (and the software they inlude) toboth detet and make deisions about software distributed within Debian.That makes developer awareness on information seurity issues somethingeven more important if we want to be suessful in providing a high-qualityuniversal operating system.

6


